Negative Numbers

Challenge Cards

Lily and Adam work together. They are counting in steps forwards and backwards, including negative numbers.

Lily gives Adam the starting number of 12 and tells him to count in steps of -5 .

Adam counts:

$$
12,7,2,-3,-8,-13,-18,-23,-28,-33
$$

Can you repeat this challenge with a partner?
Give them a starting number and a sequence of steps to follow. Remember that you can choose whether to go forwards or backwards and your start number could be negative or positive.

Negative Numbers Challenge Cards

Lily writes the following calculations:

$$
\begin{aligned}
& 14-25= \\
& -4+17=
\end{aligned}
$$

Write an explanation, including visual methods, showing how to calculate the answers to these problems.

Compare your explanations with a partner.
Can you make any improvements?

Negative Numbers Challenge Cards
Adam writes the calculation: $\quad-5+18=13$
He writes a real-life example with money to illustrate the calculation.
"I owe my dad $£ 5$. I sell a computer game to a friend for $£ 18$.
After I pay back my dad, I have $£ 13$ left."
He writes another calculation: $\quad 16-19=-3$
Write a real-life example with money to illustrate the calculation.
Share with a partner and make any improvements.

Negative Numbers Challenge Cards		
	Jiang has two thermometers. He places one in a bowl of ice with some salt and he keeps the other on the table. Write two calculations with explanations to show the difference in temperature between the salted ice and the room. Write your own scenario with two thermometers, where both temperatures are negative, and explain with calculations.	

Lily writes the following linear sequences:
$-13,-9,-3,1,5,9,13$
$16,9,2,-3,-10,-17$
$29,18,7,-6,-15,-24$

Negative Numbers Challenge Cards

Adam says, "When you count backwards in tens from a positive number through zero, the ones digit will always stay the same."

Explain why Adam is incorrect, but when he might be correct.

Compare your answers with a partner and make any improvements to your own explanation.

Can you spot and explain the errors that Lily has made?
Write some incorrect sequences for a partner to check.

Negative Numbers Challenge Cards Answers

1. Multiple answers possible.
2. Jiang writes the following statements:

- Negative nine is thirteen less than four. True: 4-13=-9
 the answer, taking it closer to the positive numbers.
- 34 more than -12 = 22 True: $\mathbf{- 1 2}+34=22$
- The temperature inside is $15^{\circ} \mathrm{C}$. Outside it is $22^{\circ} \mathrm{C}$ colder, so outside the temperature is $7^{\circ} \mathrm{C}$. False: Outside is $-7^{\circ} \mathrm{C}$. $22^{\circ} \mathrm{C}$ colder than $15^{\circ} \mathrm{C}$ will be less than $0^{\circ} \mathrm{C}$, so the temperature will be negative.

Giving reasons, explain whether each statement is true or false.
3. Lily writes the following calculations:

14-25 = -11
$-4+17=13$
Write an explanation, including visual methods, showing how to calculate the answers to these problems.

Compare your explanations with a partner. Can you make any improvements?

Accept correct explanations, such as:

-25 can be split into -14 to 0 and -11 beyond 0 to -11 .

+17 can be split into +4 to 0 and +13 to 13 .

+4			+13
-4	0	13	

4. Adam writes the calculation: $-5+18=13$

He writes a real-life example with money to illustrate the calculation.
"I owe my dad $£ 5$. I sell a computer game to a friend for $£ 18$. After I pay back my dad, I have $£ 13$ left."

He writes another calculation: 16-19 = -3
Write a real-life example with money to illustrate the calculation. Share with a partner and make any improvements.

Accept any correct real-life world problem involving money, for example 'I have $£ 16$. I want to buy a shirt for $£ 19$, so I borrow $£ 3$ from my mother. I now have a debt of $£ 3$ '.

Negative Numbers Challenge Cards Answers

5. Jiang has two thermometers. He places one in a bowl of ice with some salt and he keeps the other on the table. Here are the readings on the thermometers:

Write two calculations with explanations to show the difference in temperature between the salted ice and the room.

Accept correct calculations and explanations. For example, $-11+34=23$. The temperature in the classroom is $34^{\circ} \mathrm{C}$ warmer than the temperature of the salted ice.

23-11=34. The difference between the temperature in the room and in the slated ice is $34^{\circ} \mathrm{C}$.

Write your own scenario with two thermometers, where both temperatures are negative, and explain with calculations.

Accept any correct response, such as 'Two thermometers are placed outside on a freezing cold day. One is close to the school, and the other in the middle of the playground. The thermometer close to the school measures $-2^{\circ} \mathrm{C}$. The thermometer in the playground measures $-6^{\circ} \mathrm{C}$.'
6. Lily writes the following linear sequences: $-13,-9,-3,1,5,9,13$

The step is +4 , so Lily has added 6 to -9 to get -3 , when it should be -5.
$16,9,2,-3,-10,-17$

The step is -7, so Lily has made a mistake crossing 0 and only subtracted 5 from 2 to get to -3 , when 7 should be subtracted to get to -5.
$29,18,7,-6,-15,-24$
Can you spot and explain the errors that Lily has made?
The step is -11. Lily has mistakenly continued the pattern of the ones digit decreasing by 1 each step, but when the step crosses 0 , the ones digits should start increasing by 1.
7. Adam says, "When you count backwards in tens from a positive number through zero, the ones digit will always stay the same."

Explain why Adam is incorrect, but when he might be correct.
Compare your answers with a partner and make any improvements to your own explanation.
Accept a correct explanation with an example. For example, counting back from 14: 14, 4, -6, -16. The ones digit changes. This will be true for any sequence beginning with a number ending in 1, 2, 3, 4, 6, 7, 8, 9.

However, when you count backwards in tens from a number ending in 0 or 5 , the ones digit will always be 0 or 5 respectively: $15,5,-5,-15$ or $20,10,0,-10,-20$.

Number and Place Value Challenge Cards

Question

Write the value of the underlined digit in each number:
a) $6 \underline{75} 801$
b) 344156
c) $\underline{8} 13430$
d) 548132
e) 970130
f) 100768

Number and Place Value Challenge Cards
Number and Place Value Challenge Cards

Question

The numbers in this sequence increase by 10000

Question

 each time. Fill in the missing numbers:Compare these numbers using < or >:

671 766, 681766, \qquad , \qquad ,
\qquad
, \qquad , \qquad .
a) 989450 \qquad 998540
d) 559810 \qquad 555980
b) 876345 \qquad 877345
e) 300071 293771
c) 213600 \qquad 312060
f) 669243 \qquad 696244

Question

Put these numbers in order from smallest to largest:

600460,460 300, 346 390, 640460 ,
364 390, 346 391, 461400

Question

783455 Round this number to...
a) The nearest 10 .
b) The nearest 100 .
c) The nearest 1000 .
d) The nearest 10000 .

Number and Place Value Challenge Cards

Question

What is the value of each set of Roman numerals?

Question

Write each number using Roman numerals:
a) 2096
b) 1490
c) 3995
d) 555
e) 2963
f) 998

Number and Place Value Challenge Cards

Question

Add one thousand to each number:
a) 347601
b) 876100
c) 190388
d) 569433
e) 299599
f) 689665

Question

In this number sequence, one hundred is
added each time. Fill in the missing numbers:

322 724, 322 824, \qquad , \qquad , \qquad _,
\qquad
\qquad , \qquad
\qquad

Number and Place Value Challenge Card

Number and Place Value Challenge Cards

Question

Find ten thousand less, and ten thousand more than each number:
a) \qquad 898450 \qquad
d) \qquad 879150
\qquad
b) \qquad 665433 \qquad e) \qquad 294540 \qquad
c) \qquad 348220 \qquad

Question

Continue these number sequences:

Question

Put these Roman numerals in order from smallest to largest:
a) 24156 \qquad
b) $28 \quad 19 \quad 10 \quad 1$ \qquad
c) 12 5-2 \qquad

Number and Place Value Challenge Cards

Question

Write these numbers in words:
a) 678433
b) 399201
c) 723011
d) 500009
e) 104100

Question

Add ten to each number:

Question

What do the numbers in this sequence increase by each time?
a) 899991
b) 345595
c) 479998
d) 128795
e) 606982
f) 199990

```
456 332,457 332,458 332,459332
```


Number and Place Value Challenge Cards

Question

Fill in the missing numbers in this sequence:

311 023, \qquad , 311 223, \qquad ,

311 423, \qquad , 311 623, \qquad ,

Number and Place Value

Challenge Card Answers

a) Seventy thousand
b) Four thousand
c) Eight hundred thousand
d) One hundred
e) Thirty
f) One hundred thousand
a) $989450<998540$
b) $876345<877345$
c) $213600<312060$
d) $559810>555980$
e) $300071>293771$
f) $669243<696244$

Answer

a) 783460
b) 783500
c) 783000
d) $\mathbf{7 8 0} \mathbf{0 0 0}$

346 390, 346 391, 364 390, 460 300, 461 400, 600 460, 640460

a) MMXCVI
d) DLV
b) MCDXC
e)MMCMLXIII
c) MMMCMXCV
f)CMXCVIII

322 724, 322 824, 322 924, 323 024, 323 124, 323 224, 323 324, 323424
a) 888450898450908450
b) 655433665433675433
c) 338220348220358220
d) 869150879150889150
e) 284540294540304540

Answer

a) $24 \quad 15 \quad 6 \quad-3 \quad-12 \quad-21 \quad-30 \quad-39$
b) $28 \quad 19 \quad 10 \quad 1 \quad-8 \quad-17 \quad-26 \quad-35 \quad-44$

a) $\mathrm{CXC}=190$
b) $C C C L X I V=364$
c) MCCXXIV $=1224$
d) $\operatorname{MCDVI}=1406$
e) MDLXIX $=1569$
f) $M M C M L X I=2961$
g) $M M D=2500$

Answer

a) 160361
b) 794255
c) 505820
d) 900402
e) 333005
a) Six hundred and seventy-eight thousand, four hundred and thirty-three
b) Three hundred and ninety-nine thousand, two hundred and one
c) Seven hundred and twenty-three thousand and eleven
d) Five hundred thousand and nine
e) One hundred and four thousand one hundred

Answer

Answer

a) 900001
b) 345605
c) 480008
d)128 805
e) 606992
f) $\mathbf{2 0 0} 000$

The numbers increase by 1000 each time.

Nomber and Place Value Roman Numerals

Chaillenge Cards

In Roman numerals, each letter represents a value. To read Roman numerals you add up the values of the letters used.

Find an example of a Roman numeral which proves that this statement is false.

Share your answer with a partner. Write an explanation of why it is false.

Adam is investigating writing numbers up to 200 using Roman numerals.

Find an example of a Roman numeral which proves that this statement is true.

Share your answer with a partner.
Write an explanation of why this statement is true.
How will you record your answers systematically?

Lily is investigating writing numbers less than 1000 using Roman numerals.

Which of the numbers on Lily's list will have three Roman numerals?

How will you record your answers systematically?

Check your answers with a partner.

Adam is working out the answer to this subtraction calculation written using Roman numerals:
CCCXXIX - CLVII

Show how you could find the answer without converting the Roman numerals.

To add these two Roman numerals together, all you need to do is combine all of the Roman numerals.

```
CCLXXVII + CLIX = CCCLLXXXVIII
```

Explain why this statement is false.

Try some of your own addition calculations with Roman numerals.

Lily wants to multiply two Roman numerals without converting the numbers.

$$
\text { CCLXXXIX } \times \text { III }=
$$

Explain how to calculate the answer by combining the Roman numerals.

Number and Place Value Roman Numerals Challenge Cards Answers

1. "In Roman numerals, each letter represents a value. To read Roman numerals you add up the values of the letters used."
Find an example of a Roman numeral which proves that this statement is false.
Share your answer with a partner. Write an explanation of why it is false.
Accept any explanation that refer to simply adding the values of the letters. For example, 496 = CDXCVI
If we added add these values together we would get 716.
When a smaller symbol is after a larger symbol, we use addition but when a smaller symbol is before a larger symbol, we use subtraction.
2. "You should never write a Roman numeral using I, X or C, more than three times in a row."

Find an example of a Roman numeral which proves that statement is true.
Share your answer with a partner. Write an explanation of why it is true.
Accept any correct explanation that refers to subtracting the letter values. For example, with Roman numerals, a group of four I, X or C is shown by subtracting the letter value from another letter. For instance, 4 = 5-1 = IV, $40=50-10=$ XL, $400=500-100=C D$
3. Adam is investigating writing numbers up to 200 using Roman numerals.

Which of the numbers on Adam's list will have two Roman numerals?
How will you record your answers systematically?
Check your answers with a partner.

II	IV	VI	IX	XI	XV	XX	XL	LI	LV	$L X$	$X C$
CI	CV	CX	CL	CC							

4. Lily is investigating writing numbers less than 1000 using Roman numerals.

Which of the numbers on Lily's list will have exactly three Roman numerals that will be different?
How will you record your answers systematically?
Check your answers with a partner.
XIV, XVI, XLI, XLV, LIV, LVI, LIX, LXI, LXV, XCI, XCV, CIV, CVI, CIX, CXV, CXI, CXL, CLI, CLV, CLX, CDI, CDV, CDX, CDL, DIV, DVI, DIX, DXL, DLX, DCI, DCV, DCX, DCL, CMI, CMV, CMX, CML
"To add these two Roman numerals together, all I need to do is combine all of the Roman numerals."
CCLXXVII + CLIX = CCCLLXXXVIII
Explain why statement is false.
Try some of your own addition calculations with Roman numerals.
Accept any explanation that explains that Roman numerals cannot just be added. For example, the two Roman numerals are $277+159$, which equal 436 . By combining all of the Roman numerals together, Jiang has created the answer 438. This also doesn't work because a group of four I, X or C is shown by subtracting the letter value from another letter.
5. Adam is working out the answer to this subtraction calculation written using Roman numerals:
CCCXXIX - CLVII
Show how you could find the answer without converting the Roman numerals.
CCCXXIX - CLVII = CLXXII
Accept any correct answer that involves combining the values. For example, combine the numbers so that each column has a larger number above.
CCC - CL = CL
XX - nothing = XX
IX - VII = II
6. Lily wants to multiply two Roman numerals without converting the numbers.

CCLXXXIX \times III $=$ DCCCLXVII
Explain how to calculate the answer by combining the Roman numerals.
CC $\times 3$ = DC
$L \times 3=C L$
$X X X \times 3=X C=C L+X C=C C X L$
IX $\times 3=$ XXVII
= DC + CCXL + XXVII
$=\mathrm{DC}+\mathrm{CCLXVII}=\mathrm{DCCCLXVII}$

Namber and Place Vallus Rownding Challenge Cards

Number and Place Value Rounding

Jiang writes these four numbers:
$6000 \quad 12000 \quad 34000 \quad 200000$

For each of these numbers, write five numbers that can be rounded to the number when rounded to the nearest 1000.

For one of the numbers, explain the whole range of possible answers.

Compare your explanation with a partner.
Can you improve your explanation?

Lily and Adam decided to play a game.

Lily starts by writing a number (up to six digits) on a small whiteboard. She reads the number to Adam, who must round it to the nearest 100.

If Adam answers correctly, he gets to write the next number.
If he gets it wrong, Lily gets a point and writes another number. They play until one of them has five points.

Play the game with a partner. If your partner needs help, show them the number or ask them to write it down.

Lily writes down some numbers:

406 345, 412 902, 403 672, 417 782, 405000,404499

Which numbers are rounded to 410000 when rounded to the nearest ten thousand?

Can you make your own version of this question for a partner to complete?

Adam writes two 6-digit numbers. He rounds the numbers to the nearest 100000.

He adds the rounded numbers together.
Then, he adds the original numbers together and rounds the answer to the nearest 100000.

Will he get the same answer?

Does it depend on the numbers?

Lily says, "When you round a number to the nearest 1000, the important digit is the thousands digit."

Explain why Lily is not correct and write a better statement to explain how to round to the nearest 1000.

Share your explanation with a partner and make any improvements to your own explanation as a result.

Number and Place Value Rounding

Jiang and Adam work together.

Jiang has a number. He writes down 34700 and says that this is the result when his number is rounded to the nearest 10. What is the largest possible number that Jiang could have chosen?

Adam has a number. He writes down 580000 and says that this is the result when his number is rounded to the nearest 100. What is the smallest possible number that Adam could have chosen?

Number and Place Value Rounding

Adam uses a standard dice.
He rolls the dice 5 times to create a 5 -digit number. He rounds the number to the nearest 1000.

He repeats this 30 times and finds that more of the numbers round down than round up. He expected half of the numbers to round up and half to round down.

Can you help Adam explain why this is the case?

Work with a partner and set each other similar challenges.

Year 5 Number and Place Value Rounding Maths Mastery Challenge Cards Answers

1. Lily and Adam decided to play a game.

Lily starts by writing a number (up to six digits) on a small whiteboard. She reads the number to Adam, who must round it to the nearest 100. If Adam answers correctly, he gets to write the next number. If he gets it wrong, Lily gets a point and writes another number. They play until one of them has five points. Play the game with a partner. If your partner needs help, show them the number or ask them to write it down.
2. Jiang writes these four numbers:

$$
6000 \quad 12000 \quad 34000 \quad 200000
$$

For each of these numbers, write five numbers that can be rounded to the number when rounded to the nearest 1000. For one of the numbers, explain the whole range of possible answers. Compare your explanation with a partner. Can you improve your explanation?

Accept any correct answer between 5500 and 6499, 11500 and 12499,33500 and 34 499, 199500 and 200499.

Accept any correct explanation. For example, if rounding to the nearest 1000 gives 6000, 5500 is the smallest in the range as the 5 hundreds will round up to 6000 , but 4 hundreds would round down. 6499 is the greatest possible number because 4 hundreds will round down whereas 5 hundreds would round up.
3. Lily writes down some numbers:

$$
406 \text { 345, } 412 \text { 902, } 403 \text { 672, } 417 \text { 782, } 405 \text { 000, } 404499
$$

Which numbers are rounded to 410000 when rounded to the nearest ten thousand? Can you make your own version of this question for a partner to complete?

406 345, 412 902, 405000.

Accept any correct response.

4. Adam writes two 6-digit numbers. He rounds the numbers to the nearest 100000.

He adds the rounded numbers together. Then, he adds the original numbers together and rounds the answer to the nearest 100000 . Will he get the same answer? Does it depend on the numbers?

Accept any explanation with examples that shows that roughly half of the answers will be the same and the rest will differ by 100000.

For example, $225000+325000=550000$ which rounds to 600000
$200000+300000=500000$
5. Lily says, "When you round a number to the nearest 1000, the important digit is the thousands digit." Explain why Lily is not correct and write a better statement to explain how to round to the nearest 1000. Share your explanation with a partner and make any improvements to your own explanation as a result.

Accept any correct explanation. For example, when you round a number to the nearest 1000, the important digit is the hundreds digit. If the hundreds digit is $0-4$, then round the number down. If the hundreds digit is $5 \mathbf{- 9}$, then round the number up.
6. Jiang and Adam work together.

Jiang has a number. He writes down 34700 and says that this is the result when his number is rounded to the nearest 10. What is the largest possible number that Jiang could have chosen? Adam has a number. He writes down 580000 and says that this is the result when his number is rounded to the nearest 100. What is the smallest possible number that Adam could have chosen?

Work with a partner and set each other similar challenges.
34704
579950
7. Adam uses a standard dice. He rolls the dice 5 times to create a 5-digit number. He rounds the number to the nearest 1000.

He repeats this 30 times and finds that more of the numbers round down than round up. He expected half of the numbers to round up and half to round down. Can you help Adam explain why this is the case?

Accept any suitable answer that refers to the numbers on the dice. For example, the dice has the numbers 1 to 6 , so $1-4$ will round down and only 5-6 will round up. Over time, it would be expected that twice as many numbers will round down.

-20-19-18-17-16 -1 $1+1+1$

15-14 -13 -12 -11 -10 -9

$$
\begin{array}{lllllll}
-8 & -7 & -6 & -5 & -4 & -3 & -2
\end{array}
$$

17
 18
 19
 20
 21
 22
 2

\section*{| 9 | 30 | 31 | 32 | 33 | 34 | 35 | $:$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | + | + | + | + | + | 1 | |}

: 0 to 100 Numl $\begin{array}{ccccccc}36 & 37 & 38 & 39 & 40 & 41 & 4: \\ + & + & + & + & + & + & +\end{array}$

ber Line

$\begin{array}{lllllll}\prime+2 & 43 & 44 & 45 & 46 & 47 & 48\end{array}$

$\begin{array}{cccccccc}8 & 49 & 50 & 51 & 52 & 53 & 54 & ! \\ & + & + & + & + & + & 1\end{array}$

55565758596061

6162
 6364
 65
 66
 67

80818283848586

68788
 899091
 92

3 99100 $+$

NGHML er

ce Voulue

Less Than

Greater Than

Equal to

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

Regent Studies | www.regentstudies.com

-19 to 150

Number Square

-19	-18	-17	-16	-15	-14	-13	-12	-11	-10
-9	-8	-7	-6	-5	-4	-3	-2	-1	0
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

Fill In the Blanks

Number Square

									0
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

Part-Whole Model

	\checkmark	0	\bigcirc
()	(((
(()	(3)	()
(3)	0	(3)	(3)
(3)	(3)	(()
(3)	((3)	()
)	(3)	()	

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies | www.regentstudies.com

Regent Studies| www.regentstudies.com

5	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0

9	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0

Place Value

$\begin{gathered} \text { M } \\ \text { Millions } \\ 1000000 \end{gathered}$	Hth Hundred Thousands 100000	Tth Ten Thousands 10000	Th Thousands 1000	Hundreds 100	$\begin{gathered} \mathbf{T} \\ \text { Tens } \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ \text { Ones } \\ 1 \end{gathered}$	t Tenths 0.1	h Hundredths 0.01	th Thousandths 0.001

Place Value

M $\begin{aligned} & \text { Millions } \\ & 1000000 \end{aligned}$	Hth Hundred Thousands 100000	Tth Ten Thousands 10000	Th Thousands 1000	Hundreds 100	$\begin{gathered} \mathbf{T} \\ \text { Tens } \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ \text { Ones } \\ 1 \end{gathered}$	t Tenths 0.1	h Hundredths 0.01	th Thousandths 0.001

Place Value

thousands

1000

millions

1000000

billions
1000000000

ten
thousands
10000

hundred
millions
100000000
hundredths
0.01

thousandths

0.001

ones

Regent Studies | www.regentstudies.com

tens

Regent Studies \| www.regentstudies.com

hundreds

Regent Studies | www.regentstudies.com

thousands

Regent Studies | www.regentstudies.com

000

ten thousands

Regent Studies | www.regentstudies.com

000

hundred thousands

Regent Studies | www.regentstudies.com

100000

milions

Regent Studies | www.regentstudies.com

1

000

 000
ten millions

Regent Studies \| www.regentstudies.com

hundred millions

Regent Studies | www.regentstudies.com

100000000

billions

Regent Studies \| www.regentstudies.com
1000000000

tenths

Regent Studies | www.regentstudies.com

hundredths

Regent Studies | www.regentstudies.com

thousandths

Regent Studies | www.regentstudies.com

decimal point

Roman Numerals 1-1000

I	$1=$	1
II	$1+1=$	2
III	$1+1+1=$	3
IV	$5-1=$	4
V	$5=$	5
VI	$5+1=$	6
VII	$5+1+1=$	7
VIII	$5+1+1+1=$	8
IX	$10-1=$	9
X	$10=$	10
XI	$10+1=$	12
XII	$10+1+1=$	14
XIII	$10+1+1+1=$	15
XIV	$10+(5-1)=$	16
XV	$10+5=$	17
XVI	$10+5+1=$	18
XVII	$10+5+1+1=$	19
XVIII	$10+5+1+1+1=$	20
X XIX	$10+(10-1)=$	10
XX	$10+10=$	1

Roman Numerals 1-1000

XXI	$10+10+1=$	21
XXII	$10+10+1+1=$	22
XXIII	$10+10+1+1+1=$	23
XXIV	$10+10+(5-1)=$	24
XXV	$10+10+5=$	25
XXVI	$10+10+5+1=$	26
XXVII	$10+10+5+1+1=$	28
XXVIII	$10+10+5+1+1+1=$	29
XXIX	$10+10+(10-1)=$	30
XXX	$10+10+10=$	32
XXXI	$10+10+10+1=$	33
XXXII	$10+10+10+1+1=$	34
XXXIII	$10+10+10+1+1+1=$	35
XXXIV	$10+10+10+(5-1)=$	36
XXXV	$10+10+10+5=$	37
XXXVI	$10+10+10+5+1=$	38
XXXVII	$10+10+10+5+1+1=$	39
XXXVIII	$10+10+10+5+1+1+1=$	40
XXXIX	$10+10+10+(10-1)=$	29
XL	$50-10=$	2

Roman Numerals 1-1000

XLI	$(50-10)+1=$	41
XLII	$(50-10)+1+1=$	42
XLIII	$(50-10)+1+1+1=$	43
XLIV	$(50-10)+(5-1)=$	44
XLV	$(50-10)+5=$	45
XLVI	$(50-10)+5+1=$	46
XLVII	$(50-10)+5+1+1=$	48
XLVIII	$(50-10)+5+1+1+1=$	49
XLIX	$(50-10)+(10-1)=$	51
L	50	52
LI	$50+1=$	53
LII	$50+1+1=$	54
LIII	$50+1+1+1=$	55
LIV	$50+(5-1)=$	56
LV	$50+5=$	57
LVI	$50+5+1=$	58
LVII	$50+5+1+1=$	59
LVIII	$50+5+1+1+1=$	60
LIX	$50+(10-1)=$	50
LX	$50+10=$	4

Roman Numerals 1-1000

LXI	$50+10+1=$	61
LXII	$50+10+1+1=$	62
LXIII	$50+10+1+1+1=$	63
LXIV	$50+10+(5-1)=$	64
LXV	$50+10+5=$	65
LXVI	$50+10+5+1=$	66
LXVII	$50+10+5+1+1=$	67
LXVIII	$50+10+5+1+1+1=$	68
LXIX	$50+10+(10-1)=$	69
LXX	$50+10+10=$	70
LXXI	$50+10+10+1=$	72
LXXII	$50+10+10+1+1=$	74
LXXIII	$50+10+10+1+1+1=$	75
LXXIV	$50+10+10+(5-1)=$	76
LXXV	$50+10+10+5=$	77
LXXVI	$50+10+10+5+1=$	78
LXXVII	$50+10+10+5+1+1=$	79
LXXVIII	$50+10+10+5+1+1+1=$	80
LXXIX	$50+10+10+(10-1)=$	59
LXXX	$50+10+10+10=$	64

Roman Numerals 1-1000

LXXXI	$50+10+10+10+1=$	81
LXXXII	$50+10+10+10+1+1=$	82
LXXXIII	$50+10+10+10+1+1+1=$	83
LXXXIV	$50+10+10+10+(5-1)=$	84
LXXXV	$50+10+10+10+5=$	85
LXXXVI	$50+10+10+10+5+1=$	86
LXXXVII	$50+10+10+10+5+1+1=$	87
LXXXVIII	$50+10+10+10+5+1+1+1=$	88
LXXXIX	$50+10+10+10+(10-1)=$	89
XC	$100-10=$	90
XCI	$(100-10)+1=$	91
XCII	$(100-10)+1+1=$	92
XCIII	$(100-10)+1+1+1=$	93
XCIV	$(100-10)+(5-1)=$	94
XCV	$(100-10)+5=$	95
XCVI	$(100-10)+5+1=$	96
XCVII	$(100-10)+5+1+1=$	97
XCVIII	$(100-10)+5+1+1+1=$	98
XCIX	$(100-10)+(10-1)=$	99
C	$100=$	100
D	$500=$	500
M	$1000=$	1000

Rounding Numbers

Rounded numbers are easier to work with but they are only approximate so not as accurate.

Rounding using a number line

You can use a number line to work out whether you need to round up or down. 242 rounded to the nearest hundred is 200 as it is closer to 200 when you put it on the number line.

The same rule applies when rounding decimal places. 3.72 rounded to one decimal place is 3.7. The number line clearly shows 3.72 is closer to 3.7 than 3.8.

When rounding decimal places, only consider the numbers after the decimal point.

Rounding without a number line

Without a number line, you can round up by looking at the digit in the place value column to the right of the one you are rounding to.

$8.38619=8.4$ to one decimal place

8.38619 = 8.39 to two decimal places

$8.38619=8.386$ to three decimal places

Text

compare

order

round

one

ten

hundred

thousand

hundred thousand

million

negative

zero

digit

partition

place value

greater than

less than

sequence

increase

term

rule

between

minus

number line

interval

Roman numeral

decrease

Number and Place Value

one	ten	hundred	thousand	hundred thousand
million	zero	place value	compare	order
round	negative	digit	partition	greater than
less than	sequence	increase	term	rule
between	minus	number line	interval	Roman numeral
	power	decrease	index	

